

Imsys Technologies
Imsys Technologies AB, Sweden Imsys Technologies, USA VAT:
Johanneslundsvägen 3 9903 North Poetry Ln 838 Henderson Ave 556453-3247-01
SE-194 61 Upplands Väsby Terrell, TX 75160 Sunnyvale, CA 94086
Sweden USA USA Web:
+46 8 594 110 70 phone +1 877 775 1627 www.imsystech.com
+46 8 591 110 89 fax

Datasheet

IM3910 Microcontroller
Revision 1.3

Copyright © Imsys Technologies AB

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

2 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Copyright
Copyright © Imsys Technologies AB. All rights reserved. No part of this
document may be reproduced or translated into any language by any means
without the written permission of Imsys Technologies AB.

Disclaimer
Imsys Technologies AB makes no warranties for the contents of this document
or the accuracy or completeness thereof and disclaims any implied warranties
of merchantability or fitness for any particular purpose. Further, Imsys
Technologies AB reserves the right to revise this document and to make
changes without notifications to any person of such changes. The information
contained in this document is provided solely for use in connection with Imsys
Technologies AB products. This document should not be construed as
transferring or granting a license to any intellectual property rights, neither
expressed nor implied.

Imsys Technologies AB products have not been designed, tested, or
manufactured for use in any application where failure, malfunction, or
inaccuracy carries a risk of death, bodily injury, or damage to tangible property,
including, but not limited to, use in factory control systems, medical devices or
facilities, nuclear facilities, aircraft, watercraft or automobile navigation or
communication, emergency systems, or other applications with a similar degree
of potential hazard.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

3 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Revision History

Document: STO-DEV7028-AG
Previous revision: 1.2
Section Changes since last revision
- Updated version numbers in document to match profile version

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

4 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Table of Contents
1. The Imsys JVM... 7
1.1. Running Java Applications ...7
1.2. Java API...7
1.2.1. Imsys Java API ..8
1.3. Native Bytecode Execution...9
1.4. K Native Interface - KNI..10
1.5. Preloaded Classes ...10
1.6. Preverifier...10
1.7. The Garbage Collector and the Heap ...11
2. System Software Overview .. 12
3. Hardware Drivers .. 12
4. Operating System ... 13
4.1. Features...13
4.2. Objects...13
4.3. Processes and Threads..14
4.4. Interrupts and Services...15
4.5. System Clock and Timers...16
4.5.1. System Clock...16
4.5.2. Timers..17
4.6. Scheduling Policy and Thread Switching ..17
4.6.1. Priority Scheduling...17
4.6.2. Periodic Scheduling ...18
4.6.3. Asynchronous Scheduling..18
4.6.4. Thread Switching ...18
4.7. Synchronization Mechanisms ...19
4.7.1. Signals...19
4.7.2. Mutexes ...20
4.7.3. Semaphores ..21
4.7.4. Monitors...21
4.7.5. Message Queues...22
4.8. Error Handling ..22
4.9. Event Logging ..23
4.10. System Initialization and Startup ..24
5. Communication Drivers .. 25
5.1. COM...25
5.2. SPI ...25

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

5 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

5.3. I2C ...25
6. File Subsystem .. 26
6.1. SAFE File System ..26
6.2. FAT File System...27
6.3. File I/O API...27
6.4. Volume Mounting ...27
6.5. Initialization ..27
7. Network Subsystem ... 28
7.1. TCP/IP Stack Architecture..28
7.2. Application Layer Components...29
7.2.1. DHCP Client ..29
7.2.2. DNS Client ...29
7.3. BSD Sockets API ...29
7.4. Network Initialization...29
8. Shell Environment .. 31
8.1. High-Level Initialization...31
8.2. Communication Servers ...31
8.3. Command Interface..32
Appendix A. Java API Summary ... 33
Appendix B. ISAJ Summary ... 35
Appendix C. C API Functions Summary ... 40

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

6 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

About this document
The IM3910 is a dedicated controller for networked applications in real-time
environments. It combines the best features of traditional CISC architectures
and the efficient use of hardware resources found in RISC processors. The
microcoded architecture is enabled with a Java Virtual Machine, and hence
provides the developer a bridge between high-level application development
and gate-level execution performance.

The IM3910 integrated circuit comes with a complete software platform
including real-time operating system, JVM, flash file system, TCP/IP
communication stack, Telnet, FTP and web server. The application designer
can mix and match between Java, C and assembler languages to reach optimal
performance.

This document describes the software platform for the IM3910 Microcontroller.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

7 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

1. The Imsys JVM
Imsys Java virtual machine, JVM, is a small and efficient virtual machine for
Java2 Micro Edition (J2ME). The implementation is a porting and adaptation of
the KVM virtual machine from Sun Microsystems. Many parts of the original
KVM code has been modified or completely rewritten to take advantage of the
IM3000 processors’ unique Java capabilities.

JAVA APPLICATION

JAVA API

RUBUS OS FILE SYSTEM

NATIVE METHODS

KNI

JVM

DRIVERS

PRELOADED
CLASSES

JAVA APPLICATION

JAVA API

RUBUS OS FILE SYSTEM

NATIVE METHODS

KNI

JVM

DRIVERS

PRELOADED
CLASSES

Figure 1: Java Runtime Environment

1.1. Running Java Applications
The JVM is started by the Imsys Shell (ISH) during the system startup. There
can in be only one instance of the JVM running at the same time but several
Java applications can run simultaneously sharing the same Java heap.

Java applications are started either automatically by ISH at system startup or
explicitly by the user from the ISH command line. For more information about
ISH see chapter 8.

1.2. Java API
The base of the Java API is the Connected, Limited Device Configuration
(CLDC) version 1.0. The API also contains a subset of JDK 1.1.8 and the
javax.comm package.

A number of Imsys specific classes that give the Java applications access to
system resources are also available.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

8 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

The different groups of API classes:

o CLDC 1.0
o Subset of JDK 1.1.8
o javax.comm
o Imsys specific classes

1.2.1. Imsys Java API
The Imsys specific Java API contains a number of packages that gives access
to system resources not available from the standard APIs.

Table 1: Package se.imsys.comm

Class Description
CAN This class gives access to the CAN bus.
I2C This class implements an I2C bus master interface.
SPI This class implements a SPI bus master interface.

Table 2: Package se.imsys.net

Class Description
DNSClient Contains methods to resolve hosts.
FtpClient Implements an FTP client.
FtpServer Implements an FTP server.
HttpServer Implements a simple web server according to RFC 2616

HTTP 1.1.
SmptClient This class enables the sending of E-mails through a SMTP

server.
TftpClient Implements a TFTP client.

Table 3: Package se.imsys.ppp

Class Description
PPP Contains methods to set up a PPP connection.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

9 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Table 4: Package se.imsys.system

Class Description
DataIO This class gives low level access to the processor's native I/O

bus.
EventLog Implements an operating system event object that can be used

for application profiling.
FileSystem This class gives access to file system functions such as

mounting SD/MMC cards.
Ish This class gives access to some Imsys Shell resources.
MDIO This class makes it possible to control the MDIO interface from

java.
PortIO This class gives access to the general purpose I/O ports on the

processor.
RTC This class gives low level access to the RTC.

1.3. Native Bytecode Execution
The Java enabled processors in the IM3000 microcontroller family has beside
the standard C/Assembler instruction set a second instruction set, named ISAJ,
containing Java bytecodes. This instruction set contains about 85% of the
bytecodes in the standard Java bytecode instruction set. These instructions are
executed as machine instructions and are therefore very fast and efficiently
executed.

See chapter Appendix B for a listing of ISAJ.

The Imsys JVM has no bytecode interpreter. Instead, all bytecodes in ISAJ are
executed as native machine instructions and the other bytecodes are trapped
by the hardware and emulated in assembler. It is some of the most complex
bytecodes, like the different invoke bytecodes, which are emulated.

The execution of some of the emulated bytecodes is enhanced by the use of
quickcodes. When an emulated bytecode is executed the first time the JVM
saves some information about the execution environment in the actual program
location and then replaces the emulated bytecode with a faster quickcode. The
next time the program reaches this location, the faster quickcode will be
executed.

The processor switches automatically between the different instructions sets.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

10 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

1.4. K Native Interface - KNI
The K Native Interface (KNI) is designed for J2ME by Sun Microsystems for
resource-constraint devices and can be described as a “logical subset” of the
Java Native Interface (JNI). KNI enables the programmers to create native Java
functions in C and assembler.

Native functions can be used to get access to system functions not available
from the Java APIs.

Native functions can also be used to speed up execution in time critical parts of
a Java application. Even if most of the Java byte codes are executed as native
processor instructions on the IM3000 processors, it is possible to increase the
performance by implementing functions in C and assembler. This is due to the
fact that some of the Java byte codes are rather complex and therefore more
time consuming that equivalent instructions in C, e.g. the Java invoke codes vs.
the C subroutine call instruction.

1.5. Preloaded Classes
To speed up the startup time for Java applications, all classes in CLDC are
preloaded. This means that the CLDC classes were loaded at compile time and
are linked directly in the JVM. Other classes in the API and user application
classes are loaded by the JVM upon demand.

1.6. Preverifier
A class verifier like the one used in JDK are not suitable for small resource-
constrained devices. It would require too much memory space and use a lot of
CPU power. Therefore Sun has designed a class verifier for KVM that is
significantly smaller than the JDK verifier. This verifier requires all subroutines
to be inlined (no jsrjsrjsrjsr or retretretret instructions are allowed) and the class files should
contain a StackMapStackMapStackMapStackMap attribute before then can be loaded. This is accomplished
by using a post-javac tool named preverifier, which inserts this attribute into
normal class files.

The preverifier is delivered with Imsys Developer and can automatically be
started by Imsys Developer after class compilation.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

11 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

1.7. The Garbage Collector and the Heap
All Java objects created by the Java programs reside in the Java heap which is
allocated in the RAM memory when the JVM is initiated. The allocated size of
the Java heap can be specified in a system initialization file.

The garbage collector uses a mark-and-sweep algorithm to remove dead
(unreferenced) objects from the Java heap. In the mark phase it marks all
objects that are referenced to by the running Java threads and then during the
sweep phase all unmarked objects are removed. The sweep phase also packs
the live objects together to avoid fragmentation of the heap.

It runs as a separate thread and will automatically execute when the heap
becomes full. It can also explicitly be run by a Java or C application. The
garbage collector can only be interrupted by C threads with higher priority by
interrupt routines. No Java threads are able to interrupt the garbage collector.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

12 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

2. System Software Overview
The System Software consists of a number of tightly integrated components.
Each software component implements its own piece of functionality and can
provide an interface to other components and to application programs.

They could be logically organized into the following groups:

o Hardware drivers – handle the hardware-related operations and provide an access
to hardware resources, such as DMA, interrupts, timers, etc.

o Operating System – supplies a real-time multithreaded operating environment for
the rest of the system, including application programs.

o Communication drivers – provide a well-defined access to the facilities of different
communication interfaces, such as COM, SPI, I2C.

o File Subsystem – supplies a file-based access to the data stored on different media
types, such as FLASH memory, SD/MMC memory cards, RAM-disk.

o Network Subsystem – provides the support for TCP/IP network communications
over Ethernet and serial links.

o Shell Environment – provides a UNIX-like command shell as well as Telnet and FTP
services.

Below is a description of each System Software component.

3. Hardware Drivers
Hardware drivers are the thin layer of software, which hides the hardware-
specific implementation details and provides a simple interface to the hardware
resources. They are also responsible for low-level system initialization, such as
setting pin directions, initializing DMA controller, installing low-level interrupt
handlers and so on.

The System Software includes the system driver, a driver for the base hardware
platform, and interface drivers, drivers for different hardware I/O interfaces:

o Ethernet
o Serial
o I2C
o SPI

Hardware drivers are mostly invisible for applications, as applications normally
do not have a direct access to the underlying hardware, but uses facilities
provided by higher level components, such as an operating system or a file
system, to perform an I/O and other tasks.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

13 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

4. Operating System
The operating system, named Rubus, is a major part of the system software.
Along with hardware drivers it provides a simplified interface for using and
managing hardware resources as well as an operating environment for system
and application tasks.

4.1. Features
The Rubus OS is a real-time multithreaded operating system. It is designed for
real-time systems mainly having soft real-time requirements.

The key features of the Rubus OS are:

o Object-based – all system entities are represented as objects.
o Multithreaded – shares processor time between several threads of execution.
o Event-driven – supports two types of event handling – interrupts and services – both

can be involved for a processing of a single event.
o Priority-based – provides 256 priority levels, 32 levels for interrupts, 32 levels for

services and 192 levels for threads.
o Preemptible – any thread can be preempted by another thread with a higher priority.
o Interruptible – any thread, interrupt or service can be interrupted by another

interrupt or service with a higher priority.
o Synchronization – provides various mechanisms for threads synchronization.
o Event Logging – have a built-in event logging facilities.
o Error Handling – have a common error handling mechanism.
o POSIX Compatible – provides a programming interface to its services in compliance

with the POSIX 1003.1 Standard.

4.2. Objects
The Rubus OS is not a pure object-oriented operating system, but all entities
created within it, such as threads, events, mutexes, message queues are
considered as objects. That means that their internal structure is hidden and all
manipulations on them can be done only through the well-defined operating
system interface.

Each object has a header which contains a set of common attributes, like the
name, type of object, status flags, owner and the address of its control block.
The control block is the object’s body. It holds all data specific to each object
type and necessary for the implementation of an object behavior.

For each type of object there is its own creation routine, which allocates and
properly initializes the object’s header and body and makes the object ready for
use. Later objects are addressed by its Object Identifier, an integer value
generated by the operating system at a time of object creation. After the object
is not needed anymore it should be destroyed to release resources it used.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

14 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

All objects are accessible either by its name or by its object identifier through
the global Object Access Table. There are a number of general purpose object
manipulation routines, which are common for all object types. They allow
enumerating the object table by the object type, finding an object by its name,
getting an object’s name by its identifier, creating/destroying objects for event
logging. The detailed description of object manipulation routines can be found in
the C API Reference Manual.

4.3. Processes and Threads
A Process is an address space, one or more threads of control that execute
within that address space and other system resources allocated by these
threads during the process life-time.

A Thread is a single sequential flow of control within a process. Threads can be
created and terminated dynamically and their execution is managed by a kernel.
To each thread a run-time stack area and an executable code is associated.
The entry to the code of the thread is specified when the thread is created.
Invoking the entry function starts the execution of a thread. When the end
statement of this entry function is reached, the thread is implicitly terminated.

Each thread within the Rubus OS is represented by a thread object, which as
any other object has the common header and the type-specific body – Thread
Control Block (TCB). The TCB contains the thread run-time information, such as
thread’s state and priority, as well as pointers to the thread’s stack and code.

At any point of time a thread can be in one of the following states:

o DEAD - the thread is terminated or not initialized.
o BLOCKED - the thread is blocked, waiting for an event that unblock the thread.
o READY - the thread is ready for execution, waiting to be the running thread.
o RUNNING - the thread is currently the executing thread.

The thread changes its status implicitly, as the result of invoking a system
service or as the result of an event.

The priority of a thread defines how “often” and how “soon” the thread will get
the processor attention. It can be any value in range 64 – 255. The lower value
means the higher priority. The highest and lowest priority levels (64 and 255
respectively) are reserved for system threads. See 4.6 for more information
about thread scheduling.

At its startup the Rubus OS creates a System Process, in which context all
other threads are created and executed, and two service threads:

o Idle Thread – the lowest priority (255) thread, which occupies the processor when
no other threads are ready for execution.

o Kernel Thread – the highest priority (64) thread, which handles the thread
cancellation and termination.

The Rubus OS provides a number of services for the thread management, such
as thread creation and termination, getting and setting the thread’s priority and

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

15 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

error code, retrieving the thread status information. See the C API Reference
Manual for more information.

4.4. Interrupts and Services
Interrupt Events and Service Events are events asynchronous to the normal
execution flow of the thread. Interrupt events are normally generated by the
hardware, while service events are requested by the software.

The Rubus OS supports asynchronous events by introducing the Event
Handlers. When an event occurs the processor temporarily suspends the
current thread execution and branches to the corresponding event handler in
order to service an event. An event handler is not bound to a thread directly.
Instead it uses the interrupted thread stack while performing its operations.

The execution of events is priority-based, i.e. the highest priority event is
selected for execution at a time. The priority levels 0 – 64 are reserved for
events. Interrupt events utilize 32 higher priority levels (0 – 31) and service
events uses 32 lower priority levels (32 – 63). The event handler for each level
is stored within the Event Vector Table.

How events are executed is controlled by global and thread-specific hardware
registers:

o EIR (Enable Interrupt Register) – global 32-bit register, contains the bit-mask of
enabled interrupts.

o PIR (Pending Interrupt Register) – global 32-bit register, contains the bit-mask of
pending interrupts.

o PSR (Pending Service Register) – global 32-bit register, contains the bit-mask of
pending services.

o FLAGS: DI/EI (Disable Interrupts/Enable Interrupts) – thread-specific flag that
temporary disables execution of all interrupts and services.

o SW: PLR (Priority Level Register) – thread-specific register that indicates on which
priority level the thread is currently running.

When an interrupt is detected by the hardware, the EIR register is first checked
to see whether such interrupt is enabled (1 in the corresponding bit position) or
not. If it is enabled, the corresponding bit is set in PIR. When a service is
requested by the software the corresponding bit is set in PSR.

If interrupts are not disabled by the DI flag, the highest priority interrupt (or
service) is selected and PLR is checked to see if the current priority level is
lower than the priority level of the interrupt (or service) to be serviced. If so, the
current state is saved onto the interrupted thread stack, PLR is set to the priority
level of the interrupt, interrupts are disabled by the DI flag and the execution is
transferred to the corresponding event handler. After the event handler
executes its last statement, the state is restored and the execution is returned
back to the interrupted thread.

If a higher priority interrupt or service occurs during an execution of an event
handler, it should be interrupted and a higher priority event handler should be

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

16 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

executed. It means that any event handler must enable interrupts as soon as
possible to allow higher priority interrupts or services to be serviced.

The Rubus OS is installed as a Service Event Handler on the highest priority
level (32) and calls to its interfaces are performed via a request for service.

So, an Interrupt Event Handler shall not utilize Rubus OS services. If an
Interrupt Event Handler needs to use them, it shall associate a service event for
that purpose and perform necessary operations there.

For detailed information on how to install and remove event handlers, configure
periodic events and control interrupts see the C API Reference Manual.

4.5. System Clock and Timers

Clocks and Timers

0
0

7
n

The System
Clock

The System
Clock

Low Resolution
Timer Handler

The Periodic
Timer

The High
Resolution
Timers

The Low
Resolution
Timers

Thread
Scheduling

Handler

User Handler

User Handler

2

Real Time
Clock

Thread Time
Supervision

Handler

4.5.1. System Clock
The Rubus OS supports one System Clock measuring relative time. The
System Clock is defined to be a clock representing the time for the system, the
system time. The amount of time is measured in timer ticks.

The Periodic Timer implemented in hardware constitutes the source of the
System Clock. The System Clock is incremented continuously when the
periodic timer expires. The System Clock is reset at system start.

The time supervision of threads, thread scheduling and periodic events handling
performed by Rubus OS is based on this clock.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

17 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

4.5.2. Timers
The System Clock supports 8 high-resolution timers. For each timer there is a
counter and a reload register associated. When the timer expires it is reloaded
with the value of the reload register. If the reload value is not null, it is a periodic
timer. The maximum expiration time value is 255 milliseconds (8-bits value) for
each timer. Each of these timers has a handler associated that is called when
the related timer expire. The handler is called via a subroutine call.

Two of these timers are reserved for internal use. One is used for measuring a
thread execution time and implementing a round-robin scheduling policy.
Another is for maintaining a Real Time Clock, supervising time-waiting threads
and supporting periodic events.

See the C API Reference Manual for a detailed description on how to access
system time, use high-resolution timers and periodic events.

4.6. Scheduling Policy and Thread Switching
The Rubus OS is a multithreaded operating system. So it supports more than
one thread of execution and divides the processor time between them. It
decides when and which thread to run based on the scheduling policy.

The scheduling semantics are defined in terms of Thread Lists. There is one
thread list for each priority. Any thread in state READY must belong to one of
them. Each non-empty list is ordered, and contains a head and a tail.

The purpose of a scheduling policy is to define the allowable operations on this
set of lists. The basic scheduling principles are:

o The thread that is at the head of the highest priority non-empty schedulable list shall
be selected to become the RUNNING thread. This thread is then removed from its
thread list.

o At a given time, the thread with the highest priority is the one executing. If a thread
becomes READY and has higher priority than the running thread then the running
thread is temporarily suspended so that the high priority thread may proceed.

4.6.1. Priority Scheduling
Threads scheduled under the Priority Scheduling policy are chosen from a list
that is ordered by the time its threads have been on the list, first in – first out.

o When the RUNNING thread becomes a preempted thread, i.e. interrupted by
another thread having a higher priority, it becomes the head of the thread list for its
priority in state READY.

o When a blocked thread becomes READY, it becomes the tail of the thread list for its
priority.

o When the RUNNING thread issues the yield call, the thread becomes the tail of the
thread list for its priority in state READY.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

18 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

4.6.2. Periodic Scheduling
Threads scheduled under the Periodic Scheduling policy are released
periodically. The period is the interval between successive unblocks of the
thread.

o When released thread becomes a thread in state READY, it becomes the tail of the
thread list of its priority.

o A thread scheduled under this policy shall have completed its execution before the
next period.

The latest permissible completion time measured from the release time of the
thread is called the Deadline. It shall be less or equal the period time.

4.6.3. Asynchronous Scheduling
This policy is often also called Round Robin Scheduling policy.

Threads scheduled under the Asynchronous Scheduling policy are handled
according to Priority Scheduling Policy with the additional condition.

o When the RUNNING thread has been executing for a time period of specified length
or longer, the thread becomes the tail of the thread list for its priority in state
READY.

o The head of the thread list for the priority is removed and becomes the RUNNING
thread.

4.6.4. Thread Switching
The Scheduler only selects when and which thread to run according to its
scheduling policy rules, but the actual switching of threads is performed by the
Dispatcher.

The dispatcher is implemented as the service event handler for a Dispatch
Service event and has the lowest possible priority level (63). The scheduler
requests the dispatch service in following situations:

o When it detects that the higher priority thread is ready for execution, so the currently
running thread should be preempted out.

o It detects that the currently running thread is the subject for an asynchronous
scheduling and it has exhausted its time-slice, so it should release the processor for
another thread.

o A call to the operating system that should block or yield the current thread execution
is issued.

The dispatch service is requested by setting the corresponding bit in PSR
register. As soon as the execution priority level defined by PLR register
becomes lower than the dispatch level, the dispatch event will take place and its
event handler, the dispatcher, will be invoked.

The dispatcher first saves the running thread context information (registers and
flags) in the thread’s stack. Then it takes the highest priority thread from the
ready thread list, restores its context and changes the state of the thread to

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

19 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

RUNNING. After returning from the dispatch service handler the execution is
transferred to that thread and it continues from the point where it was stopped.

The Rubus OS provides system services that affect thread scheduling and
switching. When the thread is created it is possible to specify which scheduling
policy to apply for that thread, the time-slice interval (for asynchronously
scheduled threads) and the initial priority of the thread. The priority can also be
changed by the thread during its run-time. It is also possible to temporary lock
(or disable) the preemption of the calling thread. If the preemption is locked the
scheduling of running thread is prohibited until either the calling thread is
blocked or the preemption is unlocked. The thread can also yield (or relinquish)
the processor until it again becomes the head of its thread list.

See the C API Reference Manual for detailed description of these services.

4.7. Synchronization Mechanisms
One of the primary functions of any synchronization mechanism is to prevent
data corruption. A principal cause of data corruption is a lack of synchronization
between two or more concurrent threads of execution that manipulate the same
data structures. Another function is to provide an ordering in execution of
several threads doing the common job.

The Rubus OS provides a number of synchronization mechanisms with different
behavior and semantic. The synchronization mechanism in terms of Rubus OS
is an object and a set of services to manipulate with that object. Below is an
overview of all supported mechanisms. The detailed description of threads
synchronization services can be found in the C API Reference Manual.

4.7.1. Signals
Signals provide the ability to pause execution of the thread waiting for a
selected set of events. This allows applications to be written in an event-driven
style similar to a state machine.

A signal is said to be generated for (or sent to) a thread when the event that
cause the signal first occurs. A signal is said to be accepted by a thread when
the signal is selected and returned by the signal wait function. Each signal can
be considered to have a lifetime beginning with generation and ending with
acceptance. During the time between the generation of the signal and its
delivery or acceptance, the signal is said to be pending.

A signal can be disabled from delivery to a thread. If the receiving thread has
disabled delivery of the signal, the signal remains pending on the thread until
the thread accept delivery. Each thread has a signal mask that defines the set
of signals currently disabled from delivery to it and a signal mask that defines
the set of signals currently pending on the thread. All signals of a thread are
defined disabled at creation.

When the thread issues a signal wait call specifying the set of signals it is
waiting for, it is immediately put into a sleep state, if none of specified signals is
already pending for that thread. Later, another thread can issue a signal send

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

20 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

call for that thread, thus waking it up and making ready for execution. The signal
wait call can also be a subject of timeout, so the thread issuing this call will stay
blocked until either it receives a signal or until the specified timeout interval
expires. The thread can also examine at any time if any signals are already
pending for it and clear them if necessary.

4.7.2. Mutexes
A Mutex is a short name for a Mutual Exclusion Semaphore. It is mostly used to
protect a shared resource which allows only an exclusive access at a time.
Before performing any manipulation on this resource a thread has to
synchronize its access with other threads by locking the mutex. After the thread
has finished with the resource it has to release or unlock the mutex, thus
allowing other threads to access the resource.

A mutex is an object having the following attributes:

o A Mutex is a type of binary semaphore.
o A Mutex has an owner. The owner is the thread performing the lock operation.
o A Mutex can be locked and unlocked. Only the owner can perform unlocking.
o A Mutex uses a priority inheritance protocol to avoid priority inversion.

A thread becomes the owner of a mutex when control returns successfully from
a lock operation with the mutex identifier as the argument. A thread remains the
owner until the unlock operation returns successfully.

The mutex lock operation can either be blocking or not and the blocking
operation can be the subject of timeout. So if a thread tries to lock the mutex,
which is owned by other thread, it will either immediately get an error (in the
case of non-blocking call) or it will be placed into a wait state. The thread will
stay blocked until the mutex becomes unlocked or until the specified timeout
interval expires.

Priority inversion occurs when a higher priority thread is forced to wait for the
completion of a lower priority thread. Such a situation is in conflict to a strict
priority based scheduling. To avoid that a lower priority thread blocks a higher
priority thread, the mutex supports a priority inversion algorithm as the Priority
Inheritance Protocol.

The Priority Inheritance Protocol assures that the thread owning a resource will
execute at the higher of either its priority or the priority of the highest priority
thread waiting on any of the mutexes owned by this thread. That means, when
a thread tries to lock a mutex which is locked and the thread decide to wait for
the unlocking, the thread owning the mutex shall inherit the calling threads
priority, if it is higher than the owner’s priority.

A thread may own several mutexes at the same time. However, this may lead to
a deadlock. If a thread owns mutex M1 and tries to lock mutex M2 owned by
another thread, which in turn tries to lock M1, this will cause a deadlock
situation.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

21 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

4.7.3. Semaphores
A Semaphore is used to guard the shared resource by limiting the number of
threads than can access it simultaneously. When a semaphore is created, an
initial state of the semaphore has to be provided, which specifies the number of
threads that can concurrently access the resource it protects. It can be used to
provide mutual exclusion (similar to mutex objects) by specifying that only one
thread should be allowed to access to the shared resource at any point in time.

A semaphore is defined as an object that has an integral value and a set of
blocked thread associated with it. If the value is positive or zero, then the set of
blocked threads is empty. Otherwise, the size of the set is equal to the absolute
value of the semaphore value. When a semaphore value is less than or equal to
zero, any thread that attempts to lock it again will block or be informed that it is
not possible to perform the operation.

A semaphore is a simplified synchronization mechanism in respect to mutex. It
can be used in a context where the locking and unlocking may be controlled
from different threads and no support to avoid priority inversion is required.

A semaphore is an object having the following attributes:

o A Semaphore is a type of counting semaphore.
o A Semaphore has no owner.
o A Semaphore can be locked and unlocked.
o A Semaphore does not use a priority inheritance protocol to avoid priority inversion.

A thread that wants to access a critical resource has to wait on the semaphore
that guards the resource. The semaphore wait operation can be blocking or not
and the blocking operation can be the subject of timeout. If a thread issues a
semaphore wait call and the thread limit is not reached yet (the semaphore
count value is positive) the thread will proceed immediately. Otherwise it will get
an error (in the case of non-blocking call) or it will go into a wait state and will
stay blocked until either one or more threads release the semaphore or until a
specified timeout interval expires.

4.7.4. Monitors
A Monitor supports two kind of thread synchronization: mutual exclusion and
cooperation. Mutual exclusion enables multiple threads to independently work
on shared data without interfering with each other. Cooperation enables threads
to work together towards a common goal.

A Monitor is an object having the following attributes:

o A Monitor is a type of binary semaphore.
o A Monitor has an owner. The owner is the thread performing the lock operation.
o A Monitor can be locked and unlocked. Only the owner can perform unlocking.

In its mutual exclusion a monitor is almost identical to a mutex, but with no
priority inheritance.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

22 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Another form of monitor is called “wait and notify” monitor. A thread that
currently owns the monitor can suspend itself inside the monitor by issuing a
monitor wait call. When a thread executes a wait, it releases the monitor and
enters the wait state. The thread will stay blocked until another thread issues a
monitor notify call. When a thread executes a notify operation, it continues to
own the monitor until it releases the monitor explicitly, either by executing a
monitor wait or by unlocking it. After the notifying thread has released the
monitor, waiting threads become ready and try to reacquire the monitor.

4.7.5. Message Queues
The message passing facility of the Rubus OS allows threads to communicate
through message queues. It provides services for opening and closing a
message queue send a message to a message queue and receive a message
from a message queue.

A Message Queue is an object having the following attributes:

o A Message Queue contains messages of a fixed size.
o A Message Queue supports copying messages to and from the queue.
o A Message Queue object is dynamically allocated.
o A Message Queue has no owner. Different threads can do open and close

operations.

The interface imposes a fixed upper bound on the size of messages that can be
sent to a specific message queue. The size is set on an individual queue basis.

When the message queue is empty the thread may wish to wait for a message
to arrive. The Receive Waiting List contains all threads waiting for the arrival of
a message. When the message is placed into the message queue the thread at
the head of the list becomes unblocked. The ordering of the Receive Waiting
List is priority based – the thread with the highest priority is inserted at the head
of the list.

When the message queue is full the thread may wish to wait for a free message
to become available. The Send Waiting List contains all threads waiting for a
free space in the message queue. When this happens the thread at the head of
the list becomes unblocked. The ordering of the Send Waiting List is priority
based – the thread with the highest priority is inserted at the head of the list.

4.8. Error Handling
One of the fundamental issues to be considered at designing a dependable
real-time system is to support elaborated error handling. Error handling
includes:

o Definition of failures
o Detection of error
o Services for error handling

Error Detection. Rubus OS is designed in such a way that failures are detected
and the user shall be able to react on them in an adequate way.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

23 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Error Handling. Rubus OS supports a mechanism for specifying user defined
error handlers. An error detected during run-time is notified by calling one of
installed handlers.

The error handling in Rubus OS is layered. The layers are:

o Thread Layer. A thread may or may not have an error handler assigned. When a
thread is running and an error is detected the assigned Thread Error Handler is
invoked. If no handler is assigned the process level is checked.

o Process Layer. A process may or may not have an error handler assigned. When
an error is detected and the running thread has no assigned handler the Process
Error handler is invoked. If no error handler is assigned the System Error Handler is
called.

o System Layer. A default System Error Handler shall always be installed. An error
not directly connected to the running thread shall cause a call of this handler as well
as if no Thread or Process Error Handler is installed.

In general, all services return the error status of the operation, the return value.
An operation can be successfully or unsuccessfully completed. In case the
operation is unsuccessfully completed the return value denotes the
unsuccessful operation status and the error number is set into the object errno.

The error status of a service falls into the following categories:

o An operation, which always is successful, the return value is omitted.
o An operation which may succeed or fail. A successful operation is indicated by the

return value containing integer zero or a non-null pointer. An unsuccessful operation
is indicated by the return value containing -1 or a null pointer, accompanied by
setting errno to the value of error number.

The object errno is a logical object and is included into the context of a thread. It
can be acquired via a dedicated system service call (see the C API Reference
Manual). The value of the object errno is defined only after a call for a service
for which it is explicitly stated to be set and until it is changed by the next
service call. It should only be examined when it is indicated as valid by a return
value of a service.

4.9. Event Logging
The Rubus OS provides an event logging facility. During run-time the operating
system maintains the log of important system events, such as interrupts, thread
switches, operations on synchronization objects and so on. Each log entry
contains an event descriptor and a timestamp, i.e. what happened, when and in
which order.

This mechanism is extensible, so user can append its own event object into the
logging system and put a log entry each time the event occurs. See the C API
Reference Manual for details.

The event logging can help to simplify and speed up the process of applications
development and debugging, performance analyzing and tuning, searching for
problems or bottlenecks. The Event Log can be viewed and examined from the

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

24 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Imsys Developer IDE, where it is displayed in the convenient graphical form.
See the Imsys Developer help for more information.

4.10. System Initialization and Startup
Before the operating system can do its job it must be initialized and started. The
Rubus OS provides special routines for its initialization and startup.

The Initialization routine performs the following tasks:

o Initializes the High Resolution Timer block and installs two handlers: Thread
Scheduling Handler and Time Supervising Handler

o Initializes the Interrupt Vector Table and installs a handler for the Timer Interrupt,
which will process interrupts generated by the timer block when one of its timers
expires. Installs Kernel Service handler and Dispatch Service handler.

o Installs a system-wide error handler specified as an initialization parameter.
o Initializes the Event Log with the buffer specified as an initialization parameter.
o Initializes the Object Access Table.
o Initializes thread lists.
o Creates and initializes System Process, Kernel Thread and Idle Thread.

The Start routine starts execution of the previously created System Process.
The thread assigned the highest priority will be executed first. From now
interrupts and services are enabled. Upon successful completion this routine
shall NOT return.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

25 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

5. Communication Drivers
Communication drivers are high-level drivers that provide a well-defined access
to the facilities of different communication interfaces, such as COM, SPI, I2C.
Each communication driver tightly cooperates with the corresponding hardware
interface driver, which in turn interacts with the underlying hardware.

All operations supported by any communication driver can be divided into the
following types: initialization, configuration, input-output. They are briefly
described below. For more detailed information see the C API Reference
Manual.

5.1. COM
Prior performing any I/O operations on COM interface it should be initialized.
The initialization routine should be called ones. In order to use COM-port for I/O
operations an application first should open it. All further references to that port
are done through a handle returned by an open call. After the port is not used
anymore the application should close it and release the system resources.

The actual I/O is performed via read or write routines, which take the port
handle, the data buffer and its size as parameters. The write operation is
buffered, so a flush operation is also provided. The COM driver supports a lot of
routines for COM-port configuration, control and management. All of them
require the port to be opened first.

5.2. SPI
Prior performing any I/O operations on SPI interface it should be initialized and
configured. The initialization routine initializes the hardware interface by setting
up corresponding port pins. A set of configuration routines allow to configure an
operating mode and to set a bit rate. The operating mode is configured by
selecting a clock phase, a clock polarity, a bit order and by configuring a slave
select line.

An I/O is done though the bi-directional xmit routine, which takes the data buffer
and its size as arguments. The data will always be sent and received
simultaneously. The buffer content sent on the MOSI line will be replaced by the
data received on the MISO line.

5.3. I2C
The configuration and the initialization of the I2C interface are very simple. First
the port pin set is selected from two options: a standard set (default) or an
alternate set. Then an initialization routine is called which initializes port pins to
their idle state.

An I/O is performed though a set of read and write routines. They allow reading
or writing a one byte or multiple bytes. All of these routines take a slave device
address and a delay constant as arguments and depending on its type a data
value or a data buffer and its size.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

26 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

6. File Subsystem
The File Subsystem is an integral part of the System Software, which provides a
file-based access to the data stored on different media types, such as FLASH
memory devices, SD/MMC memory cards, RAM-disks.

The file subsystem has a layered architecture. Layers interact with each other
though a well-defined interface.

Application Layer. Normally to perform file-related tasks applications use file I/O
functions from a standard C library. This is the upper-most layer.

Common API Layer. The layer below is the Common API that hides the
differences and implementation details of underlying file systems and provides a
single and consistent interface to the application layer.

File System Layer. The next layer is the file system implementation. Two file
systems are supported: SAFE – an efficient and failsafe file system for internal
flash devices and FAT – a traditional file system for a PC-compatible media.

Media Type Driver Layer. The next layer is a high-level driver for each general
media type that shares common properties. This driver handles issues of FAT
maintenance, wear-leveling, etc.

Physical Device Driver Layer. The bottom layer is the low-level physical device
driver, which does the translation between the high-level driver and physical
device hardware.

6.1. SAFE File System
The SAFE is an efficient and failsafe file system. It was designed primarily for
internal flash devices, but can also be used on RAM-disks. The file system key
features are:

o Power Fail Safety – the system may be stopped and restarted at any point of time
and no data will be lost. The previous completed state of the file system will be
restored.

o Dynamic Wear – the file system allocates the least used blocks from those available
thus maximizing the flash device lifetime.

o Multithreaded – the file system supports simultaneous assess to files from multiple
threads.

o Long File Names – the file system supports file names of almost unlimited length.
The file name handling is efficient - it is build from a chain of small blocks and that
blocks are allocated and added automatically.

o Multiple Volumes – the file system supports multiple volumes.
o Multiple Open Files – the file system allows multiple files to be opened

simultaneously on a volume or on different volumes.
o Unicode File Names – the file system supports Unicode file names.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

27 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

6.2. FAT File System
The FAT is a traditional file system for a PC-compatible media, such as
MMC/SD flash memory cards. It can also be used on RAM-disks. The file
system key features are:

o Multithreaded – the file system supports simultaneous assess to files from multiple
threads.

o Long File Names – the file system supports file names of up to 260 bytes length.
o Multiple Volumes – the file system supports multiple volumes.
o Multiple Open Files – the file system allows multiple files to be opened

simultaneously on a volume or on different volumes.
o Unicode File Names – the file system supports Unicode file names.
o Caching – the file system supports FAT caching, write caching and directory

caching.
o PC-compatibility – FAT created partitions are Windows XP compatible.

6.3. File I/O API
An application can access files though the well-known file I/O functions of the
Standard C library. See the C API Reference Manual for details.

6.4. Volume Mounting
Before accessing any files stored on the media, the file system should “mount”
it, i.e. made it available to the system. The mounted media is represented in the
system as a volume, which has a 0-based number and a drive letter starting
with ‘A’. Any file on this volume identified by its full file name, which includes the
drive letter, the full path, and the file name.

For each type of supported media (flash, RAM-disk, MMC/SD) there is a
corresponding mount routine. See the C API Reference Manual for details.

6.5. Initialization
The file system must be initialized before using any of its functions. An
initialization routine is provided for that purpose. It should be executed before
issuing any other file system call. See the C API Reference Manual for details.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

28 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

7. Network Subsystem
The Network Subsystem, as a part of the System Software is responsible for
the networking support and network communications. Its major part is TCP/IP
protocol stack software, which provides the support for TCP/IP environment and
TCP/IP communications over Ethernet and serial links.

The TCP/IP stack software was designed to be fully reentrant and multithreaded
safe, as well as scalable and highly configurable. It is compliant with standards
and has a reach application programming interface.

7.1. TCP/IP Stack Architecture
In general, functional architecture of the TCP/IP stack is the same as in any
other TCP/IP implementations. It comprises four major layers: link layer,
network layer, transport layer and application layer. These layers interact with
each other via well-defined interfaces.

A Link layer provides an abstract view of a network interface device (or adapter)
and isolates its details from upper layers. Link layer includes device drivers for
real or virtual (pseudo) hardware and implementations of underlying physical
network protocols. Currently, TCP/IP link layer software provides following
components: driver for internal loopback adapter (pseudo-device), driver for
Imsys Ethernet Adapter and implementations of loopback and Ethernet II
protocols.

A Network layer provides the basic packet transmission service as well as
addressing and routing services. It uses the link layer interfaces to
communicate with network devices. The TCP/IP network layer software
includes an implementation of Internet Protocol (IP), as the major protocol for
packet transmission, and an implementation of Address Resolution Protocol
(ARP) as the protocol for the remote host’s hardware address discovery. Note
that architecturally ARP is implemented as the network layer module, while it’s
functionally belongs rather to the link layer than to the network layer.

A Transport layer provides for applications a number of various transport
services to exchange data over network. It uses network layer interfaces to
request an address, routing and control information, a packet transmission and
so on. The most common transports are: a datagram transport, which provides
mechanisms for unreliable datagram exchange, and a stream transport, which
provides reliable and sequential data transfer. The TCP/IP software implements
User Datagram Protocol (UDP) as datagram transport and Transmission
Control Protocol (TCP) as stream transport. It also implements Internet Control
Message Protocol (ICMP) and Internet Group Management Protocol (IGMP) as
“raw” transport modules. Any application can send and receive data in ICMP
and IGMP format. An additional transport module called “raw wildcard” transport
allows applications to access packet transmission services of the IP module, i.e.
to send and receive raw IP datagrams.

An Application layer provides unified access to the transport layer features,
independently of underlying transport protocol’s semantics and hides each

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

29 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

protocol implementation details. The TCP/IP software includes reach protocol-
independent application programming interface, compatible with BSD sockets.
All network applications using this API also belong to the application layer.

7.2. Application Layer Components
The TCP/IP software also includes a number of application layer components.
They implement application layer protocols which are parts of a TCP/IP suite,
such as Dynamic Host Configuration Protocol and Domain Name System.

7.2.1. DHCP Client
The DHCP Client plays an important role in the system initialization. To operate
in the TCP/IP environment the system needs to know its IP address, network
mask and, optionally, a default gateway. This information can be configured
manually or distributed through the DHCP server. So, the DHCP client
dynamically obtains these parameters from the DHCP server and automatically
configures TCP/IP stack software thus eliminating the need for manual
configuration. In the absence of a DHCP server on the network the system is
connected to, the DHCP client uses a so-called Zero-Config protocol to select
an IP address from a well-known address range and negotiate this selection
with other nodes on the network.

7.2.2. DNS Client
Any node on the TCP/IP network is identified by its unique IP address. But it is
more convenient to use for identification a human-readable name instead of an
IP address. The node name to the node address translation is performed by a
DNS client. In order to perform this translation the DNS client interacts with one
or more DNS servers, which store and maintain a distributed global name-to-
address mapping database.

7.3. BSD Sockets API
An application can access communication facilities of the network subsystem
through the well-known BSD Sockets application programming interface. This
interface is based on the concept of a socket – a communication endpoint –
which is quite similar to the file descriptor. See the C API Reference Manual for
details.

7.4. Network Initialization
Before communication facilities can be used, the network subsystem must be
initialized and configured. Normally it is done during the initialization of the shell
environment. The shell startup code reads configuration files and initializes the
TCP/IP stack software. When the target system does not require the shell to be
running it can initialize and configure the network subsystem by using a network
initialization routine. It will do the following:

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

30 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

o If TCP/IP configuration parameters were not provided, it tries to read them from a
permanent storage such as on-board flash memory.

o It initializes the link layer by calling each network interface driver’s entry point.
o It initializes the network layer by invoking IP and ARP initialization routines.
o It initializes the transport layer by calling each transport module initialization routine.
o It configures the internal loopback interface.
o It either configures the Ethernet interface manually if configuration parameters were

specified, or requests the DHCP client to configure it dynamically.
o Finally it sets the hostname and parameters for a name resolution client.

This routine has to be called after the Rubus OS has been initialized and
started.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

31 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

8. Shell Environment
The shell, called ISH (Imsys Shell), is responsible for the high-level system
initialization, for execution of various servers and for providing a UNIX-like
command interface.

8.1. High-Level Initialization
The shell startup code completes initialization and configuration of the system
performing the following tasks:

o Initializes the serial port interface
o Registers stdout and stderr functions
o Reads the Hardware Identification String from the flash memory
o Reads and processes a shell configuration file ish.ini.
o Reads and processes a system configuration file system.ini
o Initializes and starts a Serial server
o Configures a hostname
o Initializes and configures TCP/IP stack software
o Starts FTP and Telnet servers
o Sets the Time Zone and Daylight Saving
o Reads and executes startup file startup.ini

See the ISH User Manual for more information about configuration files and
their parameters.

8.2. Communication Servers
The shell includes Serial server, Telnet server and FTP server. The shell starts
them automatically during startup, if specified in the system configuration file.
Otherwise they can be started and stopped manually using startserver and
stopserver commands.

The Serial server provides the command-line user interface over a serial
channel. The serial port number and port parameters can be specified though
environment variables.

The Telnet server provides the command-line user interface over a TCP/IP
communication channel. The TCP port number and the server priority can be
specified though the environment variable.

The FTP server provides a remote assess to the local file system. It supports
both get and put operations. The number of simultaneous connections and the
server priority can be specified through environment variables.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

32 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

8.3. Command Interface
The shell provides a UNIX-like command interface over serial or TCP/IP
channels. It operates as any other command interpreter, i.e. reads its standard
input, detects a command, executes it and output the result into its standard
output.

For information about supported commands see ISH User Manual.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

33 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Appendix A. Java API Summary
The following classes from JDK 1.1.8 are supported.

o java.io.BufferedInputStream
o java.io.BufferedOutputStream
o java.io.BufferedReader
o java.io.BufferedWriter
o java.io.File
o java.io.FileDescriptor*
o java.io.FileInputStream*
o java.io.FilenameFilter
o java.io.FileNotFoundException
o java.io.FileOutputStream*
o java.io.FilterInputStream
o java.io.FilterOutputStream
o java.io.Serializable
o java.io.SyncFailedException
o java.lang.Double
o java.lang.Float
o java.lang.Number
o java.lang.IllegalAccessError
o java.lang.InternalError
o java.lang.LinkageError
o java.lang.NoClassDefFoundError
o java.lang.Number
o java.lang.VirtualMachineError
o java.net.BindException
o java.net.ConnectException
o java.net.ContentHandler
o java.net.ContentHandlerFactory
o java.net.DatagramPacket*
o java.net.DatagramSocket*
o java.net.FileNameMap
o java.net.HttpURLConnection
o java.net.InetAddress*

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

34 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

o java.net.MalformedURLException
o java.net.MulticastSocket
o java.net.NoRoutetoHostException
o java.net.ProtocolException
o java.net.ServerSocket*
o java.net.Socket*
o java.net.SocketException
o java.net.UnknownHostException
o java.net.UnknownServiceException
o java.net.URL
o java.net.URLConnection
o java.net.URLStreamHandler
o java.net.URLStreamHandlerFactory
o java.util.Enumeration
o java.util.EventListener
o java.util.EventObject
o java.util.Locale*
o java.util.Properties*
o java.util.StringTokenizer*
o java.util.TooManyListenersException
o javax.comm.CommDriver
o javax.comm.CommPort
o javax.comm.CommPortIdentifier
o javax.comm.CommPortOwnershipListener
o javax.comm.NoSuchPortException
o javax.comm.PortInUseException
o javax.comm.SerialPort
o javax.comm.SerialPortCommDriver
o javax.comm.SerialPortEvent
o javax.comm.SerialPortEventListener
o javax.comm.SerialPortImplementation
o javax.comm.UnsupportedCommOperationException

*) Differs from JDK 1.1.8

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

35 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Appendix B. ISAJ Summary
The following table lists the instructions in the ISAJ instructions set. It also
shows how the instructions are implemented, as native instructions or emulated.

Table 5: ISAJ Summary

Hex bytecode Implementation
00 nop Native
01 aconst_null Native
02 iconst_m1 Native
03 iconst_0 Native
04 iconst_1 Native
05 iconst_2 Native
06 iconst_3 Native
07 iconst_4 Native
08 iconst_5 Native
09 lconst_0 Native
0a lconst_1 Native
0b fconst_0 Native
0c fconst_1 Native
0d fconst_2 Native
0e dconst_0 Native
0f dconst_1 Native
10 bipush Native
11 sipush Native
12 ldc Emulated
13 ldc_w Emulated
14 ldc2_w Emulated
15 iload Native
16 lload Native
17 fload Native
18 dload Native
19 aload Native
1a iload_0 Native
1b iload_1 Native
1c iload_2 Native
1d iload_3 Native
1e lload_0 Native
1f lload_1 Native
20 lload_2 Native
21 lload_3 Native
22 fload_0 Native
23 fload_1 Native
24 fload_2 Native

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

36 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Hex bytecode Implementation
25 fload_3 Native
26 dload_0 Native
27 dload_1 Native
28 dload_2 Native
29 dload_3 Native
2a aload_0 Native
2b aload_1 Native
2c aload_2 Native
2d aload_3 Native
2e iaload Native
2f laload Native
30 faload Native
31 daload Native
32 aaload Native
33 baload Native
34 caload Native
35 saload Native
36 istore Native
37 lstore Native
38 fstore Native
39 dstore Native
3a astore Native
3b istore_0 Native
3c istore_1 Native
3d istore_2 Native
3e istore_3 Native
3f lstore_0 Native
40 lstore_1 Native
41 lstore_2 Native
42 lstore_3 Native
43 fstore_0 Native
44 fstore_1 Native
45 fstore_2 Native
46 fstore_3 Native
47 dstore_0 Native
48 dstore_1 Native
49 dstore_2 Native
4a dstore_3 Native
4b astore_0 Native
4c astore_1 Native
4d astore_2 Native
4e astore_3 Native
4f iastore Native
50 lastore Native
51 fastore Native

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

37 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Hex bytecode Implementation
52 dastore Native
53 aastore Native
54 bastore Native
55 castore Native
56 sastore Native
57 pop Native
58 pop2 Native
59 dup Native
5a dup_x1 Native
5b dup_x2 Native
5c dup2 Native
5d dup2_x1 Native
5e dup2_x2 Native
5f swap Native
60 iadd Native
61 ladd Native
62 fadd Native
63 dadd Native
64 isub Native
65 lsub Native
66 fsub Native
67 dsub Native
68 imul Native
69 lmul Native
6a fmul Native
6b dmul Native
6c idiv Native
6d ldiv Native
6e fdiv Native
6f ddiv Native
70 irem Native
71 lrem Native
72 frem Emulated
73 drem Emulated
74 ineg Native
75 lneg Native
76 fneg Native
77 dneg Native
78 ishl Native
79 lshl Native
7a ishr Native
7b lshr Native
7c iushr Native
7d lushr Native
7e iand Native

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

38 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Hex bytecode Implementation
7f land Native
80 ior Native
81 lor Native
82 ixor Native
83 lxor Native
84 iinc Native
85 i2l Native
86 i2f Native
87 i2d Native
88 l2i Native
89 l2f Native
8a l2d Native
8b f2i Native
8c f2l Native
8d f2d Native
8e d2i Native
8f d2l Native
90 d2f Native
91 i2b Native
92 i2c Native
93 i2s Native
94 lcmp Native
95 fcmpl Native
96 fcmpg Native
97 dcmpl Native
98 dcmpg Native
99 ifeq Native
9a ifne Native
9b iflt Native
9c ifge Native
9d ifgt Native
9e ifle Native
9f if_icmpeq Native
a0 if_icmpne Native
a1 if_icmplt Native
a2 if_icmpge Native
a3 if_icmpgt Native
a4 if_icmple Native
a5 if_acmpeq Native
a6 if_acmpne Native
a7 goto Native
a8 jsr Emulated
a9 ret Emulated
aa tableswitch Native
ab lookupswitch Native

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

39 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Hex bytecode Implementation
ac ireturn Emulated
ad lreturn Emulated
ae freturn Emulated
af dreturn Emulated
b0 areturn Emulated
b1 return Emulated
b2 getstatic Emulated
b3 putstatic Emulated
b4 getfield Emulated, Quickcode
b5 putfield Emulated, Quickcode
b6 invokevirtual Emulated, Quickcode
b7 invokespecial Emulated, Quickcode
b8 invokestatic Emulated, Quickcode
b9 invokeinterface Emulated, Quickcode
ba unused -
bb new Emulated
bc newarray Emulated
bd anewarray Emulated
be arraylength Emulated
bf athrow Emulated
c0 checkcast Emulated
c1 instanceof Emulated
c2 monitorenter Emulated
c3 monitorexit Emulated
c4 wide Native
c5 multianewarray Emulated
c6 ifnull Native
c7 ifnonnull Native
c8 goto_w Native
c9 jsr_w Emulated

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

40 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Appendix C. C API Functions Summary
Table 6: Rubus Function Summary

Functions Description
__errno Get current error.
event_call Call a service event handler.
event_install Install an event handler.
event_remove Remove an event handler.
event_request Request a service event handler.
mq_close Close message queue.
mq_getattr Retrieves status information and attributes of the

message queue.
mq_open Open a message queue.
mq_receive Receive a message from a message queue.
mq_send Send a message to a message queue.
mq_timedreceive Receive a message from a message queue.
mq_timedsend Send a message to a message queue.
nanosleep High resolution sleep.
os_init Initialize the operating system.
os_logstart Start event log.
os_logstop Stop event log.
os_start Start process scheduling.
os_stop Stop process scheduling.
os_userevent_put Puts an event.
os_userobject_destroy Destroy event log object.
os_userobject_init Create event log object.
pthread_attr_destroy Destroy thread attributes object.
pthread_attr_init Initialize thread attributes object.
pthread_attr_setschedparam Set schedparam attribute.
pthread_attr_setschedpolicy Set schedpolicy attribute.
pthread_attr_setstacksize Set stack attribute.
pthread_cancel Cancel thread.
pthread_create Create a new thread.
pthread_equal Get thread ID.
pthread_exit Terminate thread.
pthread_getschedparam Get scheduling parameters.
pthread_getspecific Get thread-specific data.
pthread_getstatus Get thread status.
pthread_key_create Create thread-specific data key.
pthread_key_delete Delete thread-specific data key.
pthread_mutex_destroy Destroy mutex.
pthread_mutex_init Initialize mutex.
pthread_mutex_lock Lock mutex.
pthread_mutex_timedlock Lock mutex.
pthread_mutex_trylock Lock mutex.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

41 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Functions Description
pthread_mutex_unlock Unlock mutex.
pthread_mutexattr_destroy Destroy mutex attributes object.
pthread_mutexattr_init Initialize mutex attributes object.
pthread_self Get thread ID.
pthread_setschedparam Set scheduling parameters.
pthread_setspecific Set thread-specific data.
pthread_yield Yield thread.
sem_destroy Destroy an unnamed semaphore.
sem_getvalue Get the value of a semaphore.
sem_init Initialize an unnamed semaphore.
sem_open Initialize and open a named semaphore.
sem_post Unlock a semaphore.
sem_timedwait Lock a semaphore.
sem_trywait Lock a semaphore.
sem_wait Lock a semaphore.
signal_clear Clear pending signals.
signal_send Send a signal to a thread.
signal_timedwait Wait for signals with timeout.
signal_wait Wait for signals.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

42 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Table 7: COM Function Summary

Functions Description
comClose Closes port.
comConfig Change port settings.
comDataAvailable Test if data available.
comFlush Empty the port.
comGetBaudrate Get current baudrate.
comGetBit Get port signal.
comGetFlowControlMode Get flow control mode.
comGetInputBufferSize Get input buffer size.
comGetOutputBufferSize Get current output buffer size.
comGetReceiveFraming Get framing character.
comInit Initializes the COM driver.
comOpen Opens a port.
comPortExists Tests if port exists.
comRead Read data.
comSendBreak Sends break.
comSetBaudrate Set baudrate.
comSetBit Set port signal.
comSetFlowControlMode Set flow control mode.
comSetInputBufferSize Set input buffer size.
comSetIrDAMode Enable or disable IrDA mode.
comSetOutputBufferSize Set output buffer size.
comSetReceiveFraming Enable or disable receive framing.
comWaitData Wait for data.
comWrite Write data.

Table 8: SPI Function Summary

Functions Description
spiGetBitRate Gets SPI bitrate.
spiInit Initializes SPI.
spiSetBitOrder Sets SPI data bit order.
spiSetBitRate Sets SPI bitrate.
spiSetPhase Sets SPI clock phase.
spiSetPolarity Sets SPI clock polarity.
spiSetSlaveSelect Sets SPI slave select line.
spiXmit Communicates over SPI.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

43 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Table 9: I2C Function Summary

Functions Description
i2cInit Initialize the I2C port pins to their idle state.
i2cPinSet Initialize the I2C port pins to their idle state.
i2cRead Read a block of data from the specified address.
i2cRead1 Read one byte of data from the specified address.
i2cWrite Write a block of data to the specified address.
i2cWrite1 Write one byte of data to the specified address.
i2cWriteRead First write to, and then read from the same address.

Table 10: TCP/IP Function Summary

Functions Description
accept Accepts an incoming connection on a listenning socket.
bind Assigns a local protocol address to a socket
closesocket Closes a socket.
connect Initiates a connection on a socket
getpeername Retrieves the name of the peer to which a socket is

connected.
getsockname Retrieves the local name for a socket.
getsockopt Retrieves a socket option.
listen Places a socket into a state in which it can receive

incoming connections.
recv Receives data from a connected socket.
recvfrom Receives data from a socket with its source address.
send Sends data on a connected socket.
sendto Sends data on a socket to a specific destination.
setsockopt Sets a socket option.
shutdown Shuts down a connection on a socket.
socket Creates an endpoint for communication and returns its

descriptor.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

44 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Table 11: Standard Library Function Summary

Functions Description
abort Causes abnormal program termination.
abs Computes the absolute value of an integer.
asctime Converts date and time to a string.
assert Aborts the program if assertion is false.
atexit Registers a function to be called at program termination.
atof Convert a string to a double.
atoi Convert a string to an integer.
atol Convert a string to a long.
bsearch Binary search of a sorted array.
calloc Allocate memory and set content to zero.
chdir Change working directory.
chdrive Change current drive.
clearerr Clears indicators on a stream.
clock Determine processor time.
close Close file.
closedir Close a directory stream.
creat Create file.
ctime Transform date and time to ASCII.
difftime Calculates time difference
div Compute quotient and remainder of an integer division.
exit Terminate program.
fclose Close a stream.
feof Test end-of-file indicator on a stream.
ferror Checks the stream error status.
fflush Flush a stream.
fgetc Get a byte from a stream.
fgetpos Get current file position information.
fgets Get a string from a stream.
fopen Opens a stream.
fprintf Print formatted data to a stream.
fputc Put a byte on a stream.
fputs Put a string on a stream.
fread Binary stream input.
free Free memory area.
freopen Open a stream.
fscanf Read formatted data from a stream.
fseek Reposition a stream.
fsetpos Set current file position.
ftell Return a file offset in a stream.
ftime Return date and time.
fwrite Binary output to a stream.
getc Get a byte from a stream.
getchar Get a byte from a stdin stream.
getcwd Get current working directory.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

45 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Functions Description
getdrive Get current drive number.
getenv Get an environment variable.
gets Read string from stdin.
gmtime Converts a time value to a broken-down UTC time.
isalnum Test for an alphanumeric character.
isalpha Test for an alphabetic character.
iscntrl Test for a control character.
isdigit Test for a digit.
isgraph Test for a printable character except space.
islower Test for a lower-case character.
isprint Test for a printable character including space.
ispunct Check if a character is printable but not space or

alphanumeric.
isspace Check if a character is white space.
isupper Check if a character is upper case.
isxdigit Check if a character is a hexadecimal digit.
labs Calculate the absolute value of a long.
ldiv Compute quotient and remainder of an integer division.
localtime Convert a time value to a broken-down local time.
longjmp Do a long jump.
lseek Move the read/write file offset
malloc Allocates a memory block.
mblen Get the number of bytes in next multibyte character.
mbstowcs Convert a multibyte string to a wide character string.
mbtowc Convert a multibyte string to a wide character.
memchr Search for a character in memory.
memcmp Compare memory areas.
memcpy Copy memory area.
memmove Copy memory area.
memset Fill memory with a constant byte.
mkdir Create directory.
mktime Convert a broken-down time structure into a time stamp.
open Open file.
opendir Open directory.
perror Prints system error message.
printf Formatted print.
putc Write character to stream.
putchar Write character to stdout.
putenv Change or add an environment variable.
puts Writes a string to stdout.
qsort Sorts an array.
rand Get a pseudo-random number.
read Read file.
readdir Read directory.
remove Remove file.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

46 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Functions Description
rename Rename a file.
rewind Rewind a stream to the beginning.
rmdir Remove directory.
scanf Scan stdin according to a specific format.
setbuf Sets buffer of a buffered I/O stream.
setenv Change or add an environment variable.
setjmp Set return point for a longjump.
setvbuf Sets buffer of a buffered I/O stream.
sprintf Print formatted output.
srand Set up the random generator.
sscanf Scan a string for arguments.
stat Get file status.
strcat Concatenate two strings.
strchr String scanning operation.
strcmp Compare two strings.
strcoll String compare using the current locale.
strcpy Copy a string.
strerror Returns string describing error code.
strftime Format date and time.
strlen Get string length.
strncat Concatenate a string with part of another.
strncmp Compare part of two strings.
strncpy Copy part of a string.
strpbrk Scan string for byte.
strrchr String scanning operation.
strspn Get length of a substring.
strstr Find a substring.
strtod Convert string to a double-precision number.
strtok Scan string for token.
strtol Convert a string to a long.
strtoul Convert a string to a unsigned long.
strxfrm String transformation.
time Get time of day.
tmpnam Create a unique file name.
tolower Convert a character to lower case.
toupper Convert a character to upper case.
ungetc Push back a character to a stream.
unsetenv Remove an environment variable.
vfprintf Format output of a stdarg argument list
vfscanf Format input of a stdarg list.
vprintf Formatted print to stdout.
vscanf Scan stdin for a specific format.
vsprintf Formatted print.
vsscanf Scan string for a specific format.
wcstombs Convert a wide character string to a multibyte string.

Datasheet IM3910 Microcontroller
Document no: STO-DEV7028-AG Date: 2008-08-13 Revision: 1.3

47 (47)
The ownership and copyright of this document belongs to Imsys Technologies AB. It must not be disclosed, copied, altered or
used without written permission of Imsys Technologies AB.

Functions Description
wctomb Convert a wide character to a multibyte sequence.
write Write file.

	Copyright
	Disclaimer
	Revision History
	Table of Contents
	1.	The Imsys JVM	7
	The Imsys JVM
	Running Java Applications
	Java API
	Imsys Java API

	Native Bytecode Execution
	K Native Interface - KNI
	Preloaded Classes
	Preverifier
	The Garbage Collector and the Heap

	System Software Overview
	Hardware Drivers
	Operating System
	Features
	Objects
	Processes and Threads
	Interrupts and Services
	System Clock and Timers
	System Clock
	Timers

	Scheduling Policy and Thread Switching
	Priority Scheduling
	Periodic Scheduling
	Asynchronous Scheduling
	Thread Switching

	Synchronization Mechanisms
	Signals
	Mutexes
	Semaphores
	Monitors
	Message Queues

	Error Handling
	Event Logging
	System Initialization and Startup

	Communication Drivers
	COM
	SPI
	I2C

	File Subsystem
	SAFE File System
	FAT File System
	File I/O API
	Volume Mounting
	Initialization

	Network Subsystem
	TCP/IP Stack Architecture
	Application Layer Components
	DHCP Client
	DNS Client

	BSD Sockets API
	Network Initialization

	Shell Environment
	High-Level Initialization
	Communication Servers
	Command Interface

	Java API Summary
	ISAJ Summary
	C API Functions Summary

